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ABSTRACT

Stereo matching has been one of the most active research ar-

eas in computer vision for decades. Many methods, ranging

from similarity measures to local or global matching cost op-

timization algorithms, have been proposed. As we known,

stereo matching can be formulated under the framework of

Markov random field (MRF), and the global optimization in

stereo matching can be approximated by inference procedure.

There are many exact or approximate inference algorithms,

among which belief propagation is one of the most effec-

tive. In this paper, by combining Riemannian metric based

similarity measure with the belief propagation algorithm, we

propose a global optimization method for stereo matching,

namely belief propagation on Riemannian manifold (BPRM).

Experiments on benchmark dataset demonstrate the encour-

aging performance of our method.

Index Terms— Stereo matching, Riemannian manifold,

Belief propagation, Similarity measure

1. INTRODUCTION

Stereo matching has been one of the most active areas in com-

puter vision for decades. The task of stereo matching is to find

the point correspondence between two images taken from dif-

ferent views of the same scene. When the camera geometry is

known, we usually rectify the images so that correspondence

points are in the same scanline in both images and the cor-

respondence problem is reduced to one dimensional search.

Most stereo matching methods usually consist of four steps:

(1) image preprocessing; (2) similarity measure selection; (3)

local or global matching cost optimization; and (4) disparity

postprocessing. In recent years, a large number of methods

ranging from similarity measures to local or global optimiza-

tion algorithms have been proposed. For a comprehensive

discussion on stereo matching method, we refer readers to

[1].

In our previous work [2], we have proposed a novel simi-

larity measure under Riemannian metric for stereo matching.

In this paper, we combine our similarity measure with be-

lief propagation [3][4][5] and propose a global optimization
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method for stereo matching, namely belief propagation al-

gorithm on Riemannian manifold (BPRM). The Riemannian

metric based similarity measure provides an effective way to

confuse pixel features, e.g. intensity and derivatives, which

contain a lot of discriminative information for stereo match-

ing. It also has many good properties such as scale invariant

and illumination invariant. Belief propagation on Riemannian

manifold guarantees the energy will decrease at each iteration

in the optimization procedure. The main advantage of our

method owes to the similarity measure. The experimental re-

sults on benchmark dataset indicate that our method has an

encouraging performance.

The remainder of this paper is organized as follows. In

Section 2, we briefly introduce the novel similarity measure

under Riemannian metric for stereo matching. In Section 3,

we review the belief propagation algorithm under the frame-

work of Markov random field (MRF) [3][4], and then propose

our global optimization method, namely BPRM. The exper-

imental results are demonstrated in Section 4. Finally, we

draw a conclusion in Section 5.

2. SIMILARITY MEASURE UNDER RIEMANNIAN
METRIC

The most popular window-based similarity measures in stereo

matching include sum-of-absolute-difference (SAD), sum-

of-square-differences (SSD) and normalized cross correlation

(NNC). Nevertheless, all of these similarity measures de-

scribe a point by the raw region within a window.

We adopt structure tensor [6] for alternative. Since for

stereo matching application, image intensity feature is indis-

pensable. So we define a generalized structure tensor which

fuses both image intensity and derivatives as follows:

Tn = G ∗ ffT

=

⎛
⎝

G ∗ I2 G ∗ IIx G ∗ IIy

G ∗ IxI G ∗ I2
x G ∗ IxIy

G ∗ IyI G ∗ IyIx G ∗ I2
y

⎞
⎠ , (1)

where f = (I, Ix, Iy), I is intensity, Ix and Iy are partial

derivatives with respect to x and y. G is the Gaussian smooth

filter as:

G =
1

2πσ2
exp (−x2 + y2

σ2
), (2)
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where σ is the standard deviation. The generalized structure

tensor represents the local orientation by its eigenvectors and

eigenvalues.

The distance between point descriptors is usually used for

the measurement of similarity. However, the structure tensor

lie in a Riemannian manifold. In order to clarify the distance

between structure tensors, we will first introduce the Rieman-

nian geometry [7] in brief.

A manifold M is a topological space which is locally

homeomorphism to a Euclidean space. The derivatives at

point X lie in a vector space TX , called tangent space.

A Riemannian manifold is a differential manifold in

which each tangent space has a Riemannian metric < y, y >.

The inner product induces a norm ||y||.
The minimum length curve connecting two points on the

manifold is called the geodesic. The distance between X, Y ∈
M is the length of the geodesic. let y ∈ TX , there exist an

exponential map,expX : TX �→ M . In general, the exponen-

tial map is one to one in a neighborhood of X and maps the y

to the point reached by the geodesic. The inverse map, called

logarithm map, logX : M �→ TX , maps the Y to a tangent

vector with smallest norm. So we can take this smallest norm

to measure the distance between X and Y :

d2(X, Y ) = d2(X, expX(y)) = ||y||2X =< y, y >X . (3)

The structure tensor, which is a symmetric positive def-

inite matrix, forms a Riemannian manifold. According to

[8][9], we define a Riemannian metric like that:

< y, z >X= tr(X−1/2yX−1zX−1/2). (4)

The exponential map associated to the above Riemannian

metric is

expX(y) = X1/2 exp(X−1/2yX−1/2)X1/2. (5)

By Eq.(5) we can obtain the logarithm map

y = logX(Y ) = X1/2 log(X−1/2Y X−1/2)X1/2. (6)

Submit Eq.(6) to Eq.(3)

d2(X, Y ) = ||y||2X =< y, y >X

= < logX(Y ), logX(Y ) >X

= tr(log2(X−1/2Y X−1/2)). (7)

It is just the distance between structure tensors. Furthermore,

Eq.(7) is equivalent to

d(X, Y ) =

√√√√ d∑
k=1

log2 λk(X, Y ), (8)

where λk(X, Y ) are the generalized eigenvalues of X and Y .

3. BELIEF PROPAGATION ON RIEMANNIAN
MANIFOLD

In this part, we first describe the stereo matching task under

the framework of Markov random filed (MRF) [3][4], which

belongs to undirected probabilistic graph. Let P be the set

of pixels in an image and L be a finite set of labels. The

labels correspond to the disparities that we want to estimate

at each pixel. Suppose the label of each pixel p in the im-

age is a random variable, denoted by lp. Each variable has

a state space of dimension k, etc, number of disparity level.

On MRF, we define two types of potential functions, denoted

by Φ(·) and Ψ(·, ·). While Φ(lp) represents the suitability of

assigned label, Ψ(lp, lq) reflects the compatibility of assigned

labels between neighboring pixels.

With the potential functions defined, the joint probability

of the MRF can be written as:

p(P,L) =
∏
P

Φ(lp)
∏

(p,q)∈N
Ψ(lp, lq), (9)

where N are the edges in the four-connected image grid for

computational simplicity.

By taking negative logarithm probabilities on Eq.(9), we

obtain:

E(P,L) =
∑
P

− log Φ(lp) +
∑

(p,q)∈N
− log Ψ(lp, lq). (10)

We rewrite Eq.(10) as follows:

E(f) =
∑
p∈P

Dp(lp) +
∑

(p,q)∈N
V (lp, lq), (11)

Dp(lp) is the cost of assigning label lp to pixel p, and is re-

ferred to data cost. V (lp, lq) measures the cost of assigning

labels lp and lq to two neighboring pixels, and is referred

to smoothness cost. Note that the global optimization based

stereo matching corresponds to the maximum a posteriori

(MAP) estimation problem for the MRF.

In our experiment, we choose the truncated linear model

as smoothness cost

V (lp, lq) = min(c|lp − lq|, Vmax), (12)

where c is the slope of linear model and Vmax is the upper

bound of the increase.

The optimal labeling with minimum energy is approx-

imated by belief propagation [3][4][5]. The max-product

BP algorithm works by passing messages around the MRF.

The method is iterative, with messages from all nodes being

passed in parallel. Each message is a vector of dimension k.

Let mt
p→q be the message that node p sends to a neighboring

node q at iteration t. When using negative log probabilities all

entries in m0
p→q are initialized to zero, and at each iteration
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new messages are computed in the following way

mt
p→q(lq) = min

lp
(V (lp, lq) + D(lp) +

∑
s∈N (p)\q

mt−1
s→p(lp)),

(13)

where N (p)\q denotes the neighbors of p other than q. After

T iterations a belief vector is computed for each node,

bq(lq) = Dq(lq) +
∑

p∈N (q)

mT
p→q(lp). (14)

The approximate optimal labeling l∗q is obtained individually

by

l∗q = arg min bq(lq). (15)

When it comes to our similarity measure, each pixel, i.e.

node in MRF, is represented by a generalized structure tensor.

So the MRF is established on a Riemannian manifold. Note

that only the item D(lp) in Eq.(13) depends on the Rieman-

nian metric directly. Thus in order to combine our similarity

measure with belief propagation, we need to replace the cal-

culation of data cost Dp(lp) using either region-wise SSD,

SAD or NNC by

Dp(lp) =

√√√√ d∑
k=1

log2 λk(Tp, Tp+lp), (16)

where Tp is the structure tensor descriptor of pixel p in ref-

erence image and Tp+lp is the structure tensor descriptor of

pixel p′ in target image.

We summarize the belief propagation on Riemannian

manifold method (BPRM) as follows:

Input: Ir and It: reference image and target image

dmin,dmax: disparity range

Tsize: structure tensor size

σ: Gaussian standard deviation

Output: Disparity image

foreach pixel p1 in Ir do
foreach l ∈ [dmin, dmax] do

There is a pixel p2 in It

Compute generalized structure tensors T1 and

T2 with respect to p1 and p2 by Eq.(1)

Calculate D(l) by Eq.(16)

end
end
Run belief propagation by Eq.(13)

foreach pixel p1 in Ir do
Calculate the disparity l by Eq.(15)

end
Algorithm 1: Belief propagation on Riemannian mani-

fold (BPRM)

4. EXPERIMENTAL RESULTS

The proposed method was evaluated using the Middlebury

evaluation website1 provided by [1]. There are four bench-

mark image pairs, namely ”Tsukuba”, ”Venus”, ”Teddy” and

”Cones”. For more details about the dataset and evaluation

method, please refer to [1] or the website.

Since it is required that each method runs with constant

parameters on all 4 image pairs, except for the disparity

ranges, we set σ = 1.5 in Eq.(2), c = 1 and Vmax = 20
in Eq.(12), and the size of window to calculate the gener-

alized structure tensor is 5 × 5 for all of the 4 image pairs.

Qualitative results are shown in Figure1. Quantitative results

are given in Table1, which was generated by the Middlebury

evaluation website, listing the percentage of ”bad” pixels

for different regions: non-occluded region (nonocc), whole

image (all) and pixels near discontinuities (disc). There are

totally 34 algorithms provided by the Middlebury evaluation

website with which we compare our method. For the space

limit, we only list the top 12 algorithms in Table.1. The first

column contains the names of the algorithms. The items of

the second column are the respective average ranks of the

algorithms. The subscript numbers indicate the rank of each

method in each column. We can find that the performance

of our method is encouraging, which owes to the similarity

measure. Although it is not the best one, it is among the

top 10. Especially, our method acquired very good results

on ”Teddy” and ”Cones” since these two images are rich of

texture and our Riemannian metric based similarity measure

is very suitable for this kind of images. It should be noted that

our method does not adopt any sophisticated strategies such

as segment-based preprocessing, occlusion handling, adap-

tive weighted measure, which are adopted extensively in most

of the other 34 methods, especially in the top 6 algorithms.

We believe that the performance of our method will improve

a lot if we adopt those strategies, however, it is beyond the

attention of our work in this paper.

5. CONCLUSIONS

In this paper, we combine our similarity measure with the

belief propagation algorithm, and propose a global optimiza-

tion method for stereo matching, namely BPRM. The experi-

mental results demonstrate the satisfying performance of our

method on Middlebury stereo evaluation test bed.
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Fig. 1. Results using the Middlebury datasets: Tsukuba, Venus, Teddy and Cones. The top row is original images, the mid row
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